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Small unmanned aircraft systems are envisioned to play a major role in surveilling crit-
ical assets, collecting data, and delivering goods. Large scale operations are expected to
happen in low altitude airspace in the near future, where many static and dynamic con-
straints exist. High sensitivity to wind and high maneuverability are unique characteristics
of these vehicles, which bring great challenges to effective system evaluations and mandate
such a simulation platform different from existing simulations that were built for manned
air traffic system and large unmanned fixed-wing aircraft. NASA’s Unmanned aircraft
system Traffic Management (UTM) research initiative focuses on enabling fair, safe, and
efficient unmanned aircraft system operations in the future. In order to help define require-
ments and policies for a safe and efficient UTM system to accommodate a large amount of
unmanned aerial vehicle operations, it is necessary to develop a fast-time simulation plat-
form that can effectively evaluate policies and concepts, and perform parameter studies in
a close-to-reality environment. This work analyzed the impacts of some key factors and
demonstrated the importance of these factors in a successful UTM fast-time simulation
platform. Preliminary experiments were also conducted to show potentail applications of
such a platform.

I. Introduction

The volume of small Unmanned Aircraft System(sUAS) operations is expected to increase dramatically
in the near future.1 Potential sUAS applications include, but not limited to, search and rescue, inspection
and surveillance, aerial photography and video, precision agriculture, and parcel delivery. According to
the marketing analysis2 , the global small UAS market is anticipated to hit 10 billion by 2020. FAA also
forecasted that over 7 million sUASs will be sold annually by 2020.1

The sUAS’s low operational altitude, small size, and envisioned scale of operations make Unmanned air-
craft system Traffic Management (UTM) quite different from conventional aviation traffic management. In
the low altitude airspace, besides fast-changing wind conditions, restricted areas, manned aircraft/helicopters,
and tall buildings/terrain impose many constraints in sUAS operations. The sensitive trajectory response
and high maneuverability make sUAS different from manned or unmanned large-size fixed-wing aircraft and
dramatically change the way traffic system operates. These characteristics and the predicted large scale
operations1 present great challenges in managing safe and efficient traffic operations in low altitude airspace.

NASA’s UTM research initiative3,4 is researching and defining requirements and policies for the UTM
system to ensure fair, safe, and efficient UAS operations in the future. In order to investigate the impacts
of various device parameters, traffic system rules and policies, operational schedules, and wind conditions,
especially in dense operations, it is necessary to build an effective fast-time simulation platform that can
incorporate different parameters, rules, and models, and evaluate them statistically in realistic environments.

This work reviewed past literature, studied key factors/requirements, and presented examples of potential
applications of such a UTM fast-time simulation platform. This paper is organized as follows: Section II
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presents literature review of simulations and trajectory models. Section III analyzes the impacts of several
key factors in sUAS trajectory prediction. Section IV discusses the necessity and effectiveness of the Monte
Carlo method. Section V presents preliminary simulation experiments and results and Section VI draws
conclusions.

II. Literature Review

Several categories of simulations have been widely used in research related to air traffic systems. The
first category of simulations is mainly built to study traffic systems that include multiple aircraft operations
and rules. For example, NASA developed several high-fidelity fast-time simulation platforms for studying
manned aviation, such as the Center TRACON Automation System (CTAS),5 the Future ATM Concepts
Evaluation Tool (FACET),6 and the Airspace Concept Evaluation System (ACES).7 Each of these platforms
has different strengths in aviation simulations. Due to the similarity of trajectory models used for large-size
fixed-wing UASs and manned fixed-wing aircraft, the latest ACES incorporated models of large fixed-wing
UASs8 in order to study interactions between Unmanned Aircraft Systems(UAS) and manned aircraft.9,10

In addition to these large aircraft simulation tools, researchers often developed their own simulation tools
for specific research topics. For instance, Cook et. al.11 defined a set of conflict resolution rules and tested
them in simulations with multiple sUASs. Jenie et. al.12 proposed a method for uncoordinated avoidance
maneuvers of UASs and conducted Monte Carlo simulation to verify the proposed method. The second type
of simulation deals with encounter models and is usually designated as Conflict Detection and Resolution
(CD&R) research. This category of simulations has a much smaller scope than the first one: It typically
involves two aircraft and the flight durations are usually short since its purpose is to study encounters
between two aircraft.13,14 In recent literature, Mueller et. al.15,16 developed a collision avoidance method
and included small UASs, especially multi-rotor air vehicles. The third type of simulation is vehicle centric
and is mainly developed for studying and simulating the vehicle’s model and control. This type of simulator
usually includes high-fidelity dynamic system and control model for a specific vehicle. For instance, the
Reflection17 included the Hanger 9 Quarter scale Cessna 172 and was used for autopilot design.

In studies of manned aircraft or large fixed-wing UASs, vehicle models usually only refer to vehicles’
dynamic systems because their control systems have the capability of tightly following desired trajectories at
the nautical-mile level, even in the presence of wind gust. At the cruise phase, the aircraft trajectory lateral
(or cross-track) deviation caused by gust is usually ignored because the overshoots caused by wind change are
negligible compared to both navigation errors and the nautical-mile separation standards. A typical approach
of modeling large fixed-wing aircraft trajectories used point mass equations of motion.18,19 In CTAS,5 to
reduce computational time, the horizontal and vertical paths were calculated separately.20–22 Vertical profiles
were calculated using flight path angles as control parameters. Whereas, horizontal paths were constructed
from straight lines and turn arcs, where turn radii were decided based on bank angles and ground speeds.
This simplified horizontal path calculation approach was widely used for enroute trajectory computation
and prediction in aviation research. Another approach was specifically developed for CD&R studies to build
aircraft encounter models.13,14 This approach modeled trajectories by constructing a dynamic Bayesian
network structure based on historical trajectory data from FAA’s radar records. The typical inputs of the
Bayesian network are vertical rate, airspace class, turn rate, altitude, and acceleration at the current time
step and outputs are vertical rate, turn rate, and acceleration at next time step. Once this Bayesian network
is constructed given the above inputs, the Bayesian network should be able to project the next state of the
aircraft.

Unlike large-size fixed-wing aircraft, whose trajectory errors are dominated by navigation systems, sUAS’s
trajectories are more sensitive to wind, vehicle speed, and vehicle control system because of their low op-
erational altitude, small size, and limited power, especially when separation distance requirements are at
a meter level instead of a nautical-mile level. On the other hand, sUASs are highly maneuverable, which
changes the conventional way of conflict resolution because their capability of hovering and flying at low
speeds. These unique characteristics demand both sUASs’ dynamic sytem models and controller models for
an effective UTM fast-time simulation platform, such that evaluations on this platform can provide sufficient
accuracy, especially for dense operations. Although recent research11,12,15,16 started to expand vehicles’
speed ranges in an attempt to represent small UASs or multi-rotor vehicles, negligence of modeling sUAS
controllers will yield inaccurate trajectory predictions, especially at low altitude airspace where wind changes
very often, eventually lead to invalid simulations. Therefore, besides the vehicle dynamic sysmte, vehicle’s
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control system needs to be modeled as well.
Table 1 briefly compared the attributes of the aforementioned simulation platforms. This table is not

intended to be a complete comparison as it is out of the scope of this paper. The last column of “UTM
required attributes” listed the attributes that might be required by an effective sUAS traffic simulation
platform. Since the wind effect is closely connected with controllers for sUAS, the UTM required attributes
that are missed in many existing simulations can essentially be simplified to trajectory models with controllers
and the capability of Monte Carlo simulations.

Table 1. Brief comparison of functionalities in simulations

Simulations CTAS/ACES FACET Mueller’s Jenie’s Reflection
UTM required

attributes

Maxium number of
> 100 > 100 2 > 100 1 > 100

vehicles per scenario

Fidelity of
medium medium low low high medium+

vehicle models

Vehicle’s controller × × × × X X
modeled?

Wind effect along-track along-track × ×
along-track along-track

+cross-track +cross-track

+vertical +vertical

Limited × × X × × ×
flight duration?

Capability of Monte × × X X × X
Carlo simulations?

Small UAS × × X X X X
model included?

Collision avoidance
X × X X × X

algorithm included?

III. Trajectory Sensitivity

This section shows the importance of modeling controllers in trajectory models by discussing sensitive
factors in trajectory prediction for small UASs. Although navigation system error still plays an important
role in trajectory errors, it will not be considered in this work. A quadrotor is used as a representative sUAS
with a predefined controller, which is described in detail in this section. In the following sections, the vehicle
is required to follow a straight line with a constant speed and altitude and to fly through a cross wind field.
To examine the sensitivity of the trajectory responses, the impact from various wind speeds, vehicle speeds,
and controllers are explored.

A. Trajectory Model

Many types of sUASs have been designed and manufactured in past years, such as quadrotors, multirotors,
fixed-wing UASs, hybrid UASs. Without loss of generality, a quadrotor dynamics model is used in this work
for examination. Quadrotors may have various sizes, weights, shapes, equipment, and control mechanisms;
their fundamental dynamics/plant models are the same except for different parameter values. A typical
quadrotor dynamics model can be derived using Newton-Euler equations and details of derivation can be
found in past literature.23–25 After neglecting Coriolis terms and applying small angle approximations, the
dynamics model can be expressed as Eqn. 1, where φ, θ, and ψ are roll, pitch, and yaw angles in the body
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frame, and pn, pe, and h are north position, east position, and altitude in the Earth frame. kf and km are
the aerodynamic force and moment coefficients for motors. Jx, Jy, and Jz are vehicle inertia and the vehicle
is assumed to be symmetric. Ωi is the angular velocity of rotor i and L is the length of the arms. wn and
we are the north and east components of the wind vector, where the wind effect was simplified to only affect
vehicle velocities. It is also noted that drag terms are neglected in this simplified model. The parameters in
the model are set as in Table 2.

ṗn

p̈n

ṗe

p̈e

ḧ

φ̈

θ̈

ψ̈


=



p̈n + wn

−(cosφ sin θ cosψ + sinφ sinψ)·Fz/m
p̈e + we

(− cosφ sin θ sinψ + sinφ cosψ)·Fz/m
g − cosφ cos θ · Fz/m

1
Jx
Mφ

1
Jy
Mθ

1
Jz
Mψ


(1)

Where 
Fz

Mφ

Mθ

Mψ

 =


kf (Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

(−kfΩ2
2 + kfΩ2

4)·L
(kfΩ2

1 − kfΩ2
3))·L

(kmΩ2
1 − kmΩ2

2 + kmΩ2
3 − kmΩ2

4))·L

 (2)

Table 2. Dynamics parameters

Jx Jy Jz m (kg) kf km L (m)

7.5e− 3 7.5e− 3 0.013 0.65 3e− 5 7.5e− 7 0.23

As an initial study, a proportional-derivative (PD) position controller is applied in this work. In order to
reach a desired horizontal location (xd, yd), a quadrotor needs to roll and/or pitch to eliminate the deviation.
Usually, a PD position controller calculates the desired accelerations ẍd and ÿd first (shown in Eqn. 3), and
then desired roll and pitch angles φd and θd are derived using Eqn. 4 for the attitude controller to track.
This process will be continued with updated states until the desired position is reached. Eqn. 5 shows the
controllers for roll and pitch angles. Controller’s gains are shown in Table 3, where kp and kd are proportional
and derivative gains, respectively. [

ẍd

ÿd

]
=

[
kp(xd − x) + kd(ẋd − ẋ)

kp(yd − y) + kd(ẏd − ẏ)

]
(3)

[
φd

θd

]
=
m

U1

[
−sinψ −cosψ

cosψ −sinψ

]−1 [
ẍd

ÿd

]
(4)

[
Mφ

Mθ

]
=

[
kp,φ(φd − φ) + kd,φ(φ̇d − φ̇)

kp,θ(θd − θ) + kd,θ(θ̇d − θ̇)

]
L (5)

Table 3. PD controller gains

kp kd kroll,p kroll,d kpitch,p kpitch,d

7.5 4.2 4.5 0.5 4.5 0.5
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B. Wind Speed

Given the quadrotor dynamics and control model in the previous section, Fig. 1 presents the trajectory
responses when different cross winds are imposed while the quadrotor was trying to follow a straight line
trajectory with the speed of 5 meter per second (mps). The north wind caused trajectory deviations and the
higher the wind magnitude is, the higher overshoot the vehicle has. As shown in the figure, the overshoot
produced by a 5 mps wind reached 5 meters. In addition, the settling time that a vehicle needs to converge
to its steady state increases when the cross wind increases. It took the vehicle over 50 meters to recover
from the overshoot when it was experiencing 8.7 mps cross wind. Considering the fact that separation
standards for multiple sUAS operations might be close to a meter-level precision, these deviations should
not be neglected when predicting and calculating trajectories for sUASs in UTM simulations, neither should
they be simplified and represented by some statistical distributions.

Figure 1. Trajectories at various cross wind speeds (vehicle speed = 5 m/s)

C. Desired vehicle ground speed

In actual operations, even for the same type of sUASs, different desired vehicle ground speeds may be set
up by different operators intentionally or unintentionally as long as speeds are under the maximum value.
However, sUAS’s trajectories are also sensitive to desired vehicle ground speeds. Fig. 2 presents trajectory
responses with the same cross wind but different vehicle desired ground speed. Although lateral overshoots
and deviations are similar, the resulted trajectories are quite different. The horizontal distance in the x-
direction for the vehicle to recover from overshoots vary from 10 meters to over 50 meters at different vehicle
speeds, which will greatly affect the 4D trajectory prediction accuracy and outcomes of collision avoidance
algorithms.

D. Control mechanism

The controller might be the most sensitive source for trajectory calculation errors. The difference in the
controllers can be a different control gain, a different limit on forces or rotation angles, or a different control
function, such as a PD controller vs. a backstepping controller. Even a different range for capturing a
waypoint causes discrepancy in trajectories as well.

As a simple example, Fig. 3 shows the comparison when different proportional gain kp is applied. It shows
that when the proportional gain increases the response time that a vehicle takes to reach the peak deviation
decreases while the overshoots stay similar. However, if kp increases too much, the vehicle oscillates around
the reference trajectory and needs a long time to settle down to the desired state.
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Figure 2. Trajectories at various vehicle desired ground speeds ( cross wind speed = 5 m/s)

Figure 3. Trajectories with various control gains

IV. Monte Carlo Simulation

Statistical study of parameters and uncertainties is necessary to understand and evaluate the safety
and efficiency of the future UTM system. The parameters and uncertainties involve many sources, such as
onboard sensors, navigation and communication devices, right of way rules, collision avoidance algorithm
and rules, various weather conditions, and vehicle systems. When dealing with a high dimensional problem,
or high number of random variables, the Monte Carlo method/simulation26 can be a very useful tool as it is
known to be fairly independent of the problem dimension.27,28 Monte Carlo simulation is characterized by a
rate of convergence of order O(1/

√
n), where n is the number of simulations. The relationship between the

number of simulations and the percentage error of the mean at a given confidence interval29 can be explicitly
expressed as in Eqn. 6, where zc is the confidence coefficient. Sx and x̄ are the sample variance and mean,
respectively.

E =
100zcSx
x̄
√
n

(6)
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This property makes Monte Carlo simulation widely used in financial and engineering situations. Appli-
cation exists in manned aviation as well. For instance, Gravio et. al.30 applied Monte Carlo method to study
safety performance of air traffic management system with about 1, 000 simulations. In order to statistically
measure the impacts of parameters and uncertainties in various models in UTM system, it is necessary for
an effective fast-time simulation platform to have the capability of Monte Carlo simulations.

V. Preliminary experiments

In order to conceptually demonstrate how the fast-time simulation can be used for parameter and uncer-
tainty studies, a prototype of a fast-time simulation platform for multiple sUAS operation was implemented
for this work. Two sample experiments were conducted to demonstrate the use cases for the fast-time
simulation. The experiment set-up is described in the first section.

A. Experiment set-up

In following experiments, a total of six sUASs were planned to fly cross the region. The flight plans were
composed of a set of waypoints from origins and destinations with associated timea. For simplicity, the
sUASs were assumed to be the same type. The sUASs were assumed to follow the flight plan with a desired
vehicle ground speeds at 5 mps. In addition, a narrow rectangular north wind field is added to introduce
errors and uncertainty into the simulations. It is assumed that the wind magnitudes in the rectangle follow
a normal distribution with a mean value and standard deviation. The wind is the only uncertainty source
in this experiment. As the number of Monte Carlo simulations is set to 1, 000, the wind magnitude will vary
across different Monte Carlo simulations. Fig. 4 shows the flight plans and wind field.

Figure 4. Flight plans and wind field setup

Besides vehicle trajectory models, traffic rules or collision avoidance rules need to be defined before any
preliminary experiments can be conducted. In this prototype, conflict detection is assumed to be performed
by vehicle-to-vehicle communication. Under this scheme, every sUAS is assumed to broadcast its current
position and planned trajectory in future 5 second and the trajectory projection is assumed to be nominal.
The detection range was arbitrarily set to 100 meters. The minimum separation requirement is also arbitrarily

aA flight plan with waypoints and desired ground speeds is another option.
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assumed to be 10 meters for this initial study, which means if two vehicles are closer than 10 meters a loss of
separation will be recorded. The minimum distance that triggers an avoidance maneuver is set to 20 meters
and the minimum distance to the conflict point for an avoidance maneuver is defined to be 30 meters. A
de-centralized collision avoidance algorithm is utilized here. The right of way was defined similar to ground
transportation, which is that the vehicle coming from the right-hand side has the right of the way. The sUAS
who doesn’t have the right of way has to yield if there is any incoming conflict. Apparently, this simple
rule negelects the head-on encounters as it is just used as an example for preliminary experiments. Three
avoidance maneuvers were assumed: left or right turns with constant bank angles and hovering. Obviously,
there are numerous parameters and options in setting up traffic rules. For instance, conflict detection can be
done by onboard sensors or ground-to-vehicle communications, other than vehicle-to-vehicle communications
defined in the prototype. Collision avoidance maneuvers can involve altitude changes and there also exist
various methods including centralized algorithms for collision algorithms. Exploration of those parameters,
options, and algorithms is out of the scope of this paper although it will be supported by the fast-time
simulation architecture in future.

B. Impact of wind

In this section, the default avoidance maneuver is defined to be a right turn. Table 4 shows the statistical
measurements when different wind speeds were set. Three cases are presented. There is no wind in the first
case. The average wind speeds in the second and third case were 3 mps and 5 mps, respectively, and the
standard deviations were 2 and 3 mps in the second and third cases, respectively. Two types of metrics
are presented. Loss of separation can be a safety metric. And extra flight distance and extra flight time
are metrics related to enery consumption or efficiency. Percentage errors are calculated at 99% confidence
level according to Eqn. 6. For instance, an error percentage of 3.5% means that it is 99% confident that the
calculated mean will not differ by more that 3.5% from the truth.

Table 4. Statistical measurements under various wind conditions

wind speed loss of separation extra flight distance (m) extra flight time (s)

mean std. mean std. error(%) mean std. error(%) mean std. error(%)

Case 1 0 0 0 0 0b 165.5 0.0 0.0 31.0 0.0 0.0

Case 2 3 1 0 0 0 168.8 3.6 0.17 31.0 0.03 0.01

Case 3 5 2 0.11 0.31 23.8 183.7 27.1 1.2 31.3 3.2 0.82

As shown in the table, Case 1 is an ideal case, where vehicles fly at their moderate speeds and there is
no wind. Because there is no wind, no errors were introduced in Case 1. Therefore, the 1, 000 simulations
are deterministic and identical simulations and standard deviations and errors are zeros. The number of
loss of separation reflects how well the collision avoidance scheme works. Case 2 introduced moderate wind
with moderate variation; there is still no loss of separation thanks to the conservative set up of collision
avoidance scheme. However, the extra flight distance and associated errors increased, so did the variation.
The percentage error of 0.17% for the extra flight distance means that there is 99% confidence that the true
mean value is within 0.17% of 168.8. In Case 3, the wind’s mean and variation were increased. Because the
unexpected trajectory deviation increased due to the strong wind, loss of separation happened. A single loss
of separation happened in 56 simulations out of a total of 1,000 simulations, which is reflected by the large
error percentage of 23.8% at the 99% confidence level. This experiment showed that even with the same
vehicles, equipages, and schedules, wind plays an important role on safety and energy consumption. When
wind uncertainty is high, the likelihood of loss of separation increases and the required power consumption
increases as well.

C. Impact of avoidance maneuver

The experiment in this section compared different avoidance maneuvers as an example of parameter studies
that can be performed with this fast-time simulation capability. The purpose of this experiment is not

bThe error percentage was set to zero based on physical meaning, because division by zero happens if following the formula.
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to investigate or validate different maneuvers. The experiment is utilized to present a sample potential
application that can be performed on such a fast-time simulation platform and to show the importance and
effectiveness of this kind of platform for researching future UTM system. In the first case, a right turn was
set as the default collision avoidance maneuver if there is any conflict. A left turn and hover were set as
default maneuvers in the second and third cases, respectively. The mean and standard deviation of the wind
field were defined to be 3 mps and 1 mps, respectively.

Table 5. statistical measurements with various avoidance maneuvers

avoidance loss of separation extra flight distance (m) extra flight time (s)

maneuver mean std. error(%) mean std. error(%) mean std. error(%)

Case 1 right turn 0 0 0 168.8 3.6 0.17 31.0 0.03 0.01

Case 2 left turn 0.847 0.36 3.46 71.0 23.3 2.7 9.5 3.4 3.0

Case 3 hover 0.04 0.20 38.9 5.95 4.1 5.6 20.9 4.4 1.72

Table. 5 shows the statistical measurements when different avoidance maneuvers were used. Case 1 has
been shown in previous section. Case 2 shows that combining left maneuver with the ground traffic right-of-
way is really not a good option. It resulted in a loss of separation in 844 simulations. The percentage error
shows that it is almost certain that the loss of separation will happen in any simulation. In Case 3, vehicles
used hovers to avoid any detected conflicts. Loss of separation happened in 42 simulations. The extra flight
distance is lowc, and the extra flight time remains at a level similar to the other two cases.

VI. Summary

This work presented key factors and requirements of an effective fast-time simulation platform for re-
searching sUAS operations. It first briefly reviewed different capability requirements between UTM simula-
tions where sUASs are dominant and ATM simulations where large size manned and unmanned fixed-wing
aircraft are prevailing. Then a trajectory sensitivity study was conducted to demonstrate why the require-
ments for trajectory models are different in sUAS operations. The study showed that sUAS’s trajectory
was sensitive to many factors including wind gusts, vehicle speeds, and control systems. The resulted devia-
tions are usually over several meters and should not be ignored when calculating and predicting trajectories
for sUASs. The importance and effectiveness of the Monte Carlo method was discussed, which showed that
Monte Carlo simulations are suited for UTM traffic problems that involve high-dimensional uncertainty/error
sources. Finally, experiments were conducted to demonstrate the impact of wind on the evaluation of sUAS
operations. The second experiment presented a sample application of parameter studies with different avoid-
ance maneuvers. The proposed fast-time simulation capability can provide a comprehensive and statistical
assessment for the sample parameter study.

As a follow-up step, a cloud-based fast-time simulation platform is under development by NASA UTM
research teams. To evaluate safety and efficiency metrics for multiple sUAS operations at low altitude
airspace, this fast-time simulation capability will address aforementioned requirements by including various
sUAS trajectory models and Monte Carlo simulation capability and support studies of paramters, models,
rules, and policies.

References

1“FAA Aerospace Forecast,” Tech. Rep. FY2016-2036, 2016.
2“Small Drones Market by Application (Defense, Commercial), Size (Micro, Mini, Nano), Payload (Sensor, Telemetry

System, Camera, Videoscreen, NBC Detection, SAR, Others), Type, Propulsion Systems, & Region - Global Forecasts to
2020,” http://www.marketsandmarkets.com/Market-Reports/small-uav-market-141134567.html, 2016, [online; accessed Oc-
tober 2016].

3Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., and Robinson, J. E., “Unmanned Aircraft System Traf-
fic Management (UTM) Concept of Operations,” 16th AIAA Aviation Technology, Integration, and Operations Conference,
Washington, D.C., 13-17 June 2016.

cThe nonzero extra flight distance in Case 3 is mainly caused by wind.

9 of 10

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
Ju

ne
 9

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

30
73

 



4Kopardekar, P., “Unmanned Aerial System Traffic Management (UTM): Enabling Low-altitude Airspace and UAS Op-
erations,” Tech. Rep. NASA TM-2014-218299, 2014.

5Erzberger, H., Davis, T. J., and Green, S. M., “Design of Center-TRACON Automation System,” AGARD Meeting on
Machine Intelligence in Air Traffic Management , Berlin, Germany, 11-14 May 1993.

6Bilimoria, K., Sridhar, B., Chatterji, G., Sheth, K., and Grabbe, S., “FACET: Future ATM Concepts Evaluation Tool,”
3rd USA/Europe Air Traffic Management R&D Seminar , Napoli, Italy, 13-16 June 2000.

7Sweet, D. N., Manikonda, V., Aronson, J. S., Roth, K., and Blake, M., “Fast-time Simulation System For Analysis of
Advanced Air Transportation Concepts,” AIAA Modeling and Simulation Technologies Conference and Exhibit , Monterey,
California, 5-8 August 2002.

8Wieland, F., Ayyalasomayajula, S., and Mooney, R., “Modeling and Simulation for UAS in the NAS,” Tech. Rep.
NASA/CR-2012-NN11AQ74C, September 2012.

9Johnson, M., Mueller, E., and Santiago, C., “Characteristics of a Well Clear Definition and Alerting Criteria for En-
counters between UAS and Manned Aircraft in Class E Airspace,” 11th USA/Europe Air Traffic Management Research and
Development Seminar , Lisbon, Portugal, 2015.

10Park, C., Lee, S. M., and Mueller, E. R., “Investigating Detect-and-Avoid Surveillance Performance for Unmanned
Aircraft Systems,” 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA, 16-20 June 2014.

11Cook, B., Cohen, K., and Kivelevitch, E., “A Fuzzy Logic Approach For Low Altitude UAS Traffic Management (UTM),”
AIAA Science and Technology Forum and Exposition 2016 , San Diego, California, 4-8 January 2016.

12Jenie, Y. I., Kampen, E. V., Visser, C. C., Ellerbroek, J., and Hoekstra, J. M., “Three-Dimensional Velocity Obstacle
Method for Uncoordinated Avoidance Maneuvers of Unmanned Aerial Vehicles,” Journal of Guidance, Control, and Dynamics,
Vol. 39, No. 10, 2016.

13Kochenderfer, M., Espindle, L. P., Edwards, M., Kuchar, J., and Griffith, J. D., “Airspace Encounter Models for Con-
ventional and Unconventional Aircraft,” Eighth USA/Europe Air Traffic Management R&D Seminar , Napa, CA, June 29 -
July 2 2009.

14Kochenderfer, M., Edwards, M., Espindle, L. P., Kuchar, J., and Griffith, J. D., “Airspace Encounter Models for Esti-
mating Collision Risk,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010.

15Mueller, E. and Kochenderfer, M. J., “Multi-Rotor Aircraft Collision Avoidance using Partially Observable Markov
Decision Processes,” AIAA Modeling and Simulation Technologies Conference, Washington, D.C., 13-17 June 2016.

16Mueller, E. and Kochenderfer, M. J., “Simulation Comparison of Collision Avoidance Algorithms for Multi-Rotor Air-
craft,” AIAA Modeling and Simulation Technologies Conference, Washington, D.C., 13-17 June 2016.

17Ippolito, C., “An Autonomous Autopilot Control System Design for Small Scale UAVs,” Tech. Rep. QSS Group, NASA
Ames, December 2006.

18Lee, H. and Erzberger, H., “Time Controlled Descent Guidance Algorithm for Simulation of Advanced ATC Systems,”
Tech. Rep. Tech. Rep. NASA Technical Memorandum 84373, NASA Ames Research Center, Moffett Field, CA, August 1983.

19Erzberger, H. and Chapel, J., “Ground Based Concept for Time Control of Aircraft Entering the Terminal Area,” AIAA
Guidance, Navigation, and Control Conference, Snowmass, CO, 19-21 August 1985.

20Slattery, R. and Zhao, Y., “Trajectory Synthesis for Air Traffic Automation,” Journal of Guidance, Control, and Dy-
namics, Vol. 20, No. 2, 1997.

21Erzberger, H., Paielli, R., Isaacson, D., and Eshow, M. M., “Conflict Detection and Resolution In the Presence of
Prediction Error,” 1st USA/Europe Air Traffic Management Research and Development Seminar , Saclay, France, 17-20 June
1997.

22Xue, M. and Erzberger, H., “Improvement of Trajectory Synthesizer for Efficient Descent Advisor,” 11th AIAA Aviation
Technology, Integration, and Operations Conference(ATIO), Virginia Beach, VA, 20-22 September 2011.

23Beard, R. W., “Quadrotor Dynamics and Control,” Tech. rep., October 2008.
24Bouabdallah, S. and Siegwart, R., “Full Control of a Quadrotor,” Proceedings of the 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, San Diego, CA, Oct 29 - Nov 2 2007.
25Altug, E., Ostrowski, J. P., and Mahony, R., “Control of a Quadrotor Helicopter Using Visual Feedback,” Proceedings of

the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C., May 2002.
26Metropolis, N. and Ulam, S., “The Monte Carlo Method,” Journal of the American Statistical Association, Vol. 44, No.

247, 1949.
27Sabino, P., “Implementing Quasi-Monte Carlo Simulation with Linear Transformations,” Computational Management

Science, Vol. 8, No. 1-2, 2011.
28Niederreiter, H., Random number generation and quasi-Monte Carlo methods, SIAM, 1992.
29Driels, M. R. and Shin, Y. S., “Determining the Number of Iterations for Monte Carlo Simulations of Weapon Effective-

ness,” Tech. Rep. Technical Report, Naval Postgraduate School, Monterey, CA, April 2004.
30Gravio, G. D., Mancini, M., Patriarca, R., and Costantino, F., “Overall safety performance of Air Traffic Management

System,” Safety Science, Vol. 72, 2015.

10 of 10

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
Ju

ne
 9

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

30
73

 


